Gauss-Legendre Numerical Integrations over a Quadrilateral Element in Closed Form

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Gauss-Radau and Gauss-Lobatto Numerical Integrations Over a Four Node Quadrilateral Finite Element

In this paper Gauss-Radau and Gauss-Lobatto quadrature rules are presented to evaluate the rational integrals of the element matrix for a general quadrilateral. These integrals arise in finite element formulation for second order Partial Differential Equation via Galerkin weighted residual method in closed form. Convergence to the analytical solutions and efficiency are depicted by numerical ex...

متن کامل

Numerical integrations over an arbitrary quadrilateral region

In this paper, double integrals over an arbitrary quadrilateral are evaluated exploiting finite element method. The physical region is transformed into a standard quadrilateral finite element using the basis functions in local space. Then the standard quadrilateral is subdivided into two triangles, and each triangle is further discretized into 4 n right isosceles triangles, with area 1 2n2, and...

متن کامل

Gauss Legendre-Gauss Jacobi quadrature rules over a tetrahedral region

This paper presents a Gaussian quadrature method for the evaluation of the triple integral ( , , ) T I f x y z d xd yd z = ∫∫∫ , where ) , , ( z y x f is an analytic function in , , x y z and T refers to the standard tetrahedral region:{( , , ) 0 , , 1, 1} x y z x y z x y z ≤ ≤ + + ≤ in three space( , , ). x y z Mathematical transformation from ( , , ) x y z space to ( , , ) u v w space maps th...

متن کامل

Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface

This paper first presents a Gauss Legendre quadrature method for numerical integration of I 1⁄4 R R T f ðx; yÞdxdy, where f(x,y) is an analytic function in x, y and T is the standard triangular surface: {(x,y)j0 6 x, y 6 1, x + y 6 1} in the Cartesian two dimensional (x,y) space. We then use a transformation x = x(n,g), y = y(n,g) to change the integral I to an equivalent integral R R S f ðxðn;...

متن کامل

Short Communication Gauss Legendre quadrature over a triangle

This paper presents a Gauss Legendre quadrature method for numerical integration over the standard triangular surface: {(x, y) | 0 , 1, 1} x y x y ≤ ≤ + ≤ in the Cartesian two-dimensional (x, y) space. Mathematical transformation from (x, y) space to (ξ, η) space map the standard triangle in (x, y) space to a standard 2-square in (ξ, η) space: {(ξ, η)|–1 ≤ ξ, η ≤ 1}. This overcomes the difficul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bangladesh Journal of Scientific and Industrial Research

سال: 1970

ISSN: 2224-7157,0304-9809

DOI: 10.3329/bjsir.v46i3.9050